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NUMERICAL APPROXIMATION OF TIME FRACTIONAL

ADVECTION-DISPERSION MODEL ARISING FROM SOLUTE

TRANSPORT IN RIVERS
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Abstract. In this note, radial basis functions (RBFs) approximation is utilized for solving

fractional advection-dispersion equation, which has been used in groundwater hydrology as a

reliable approach for modeling transport of passive tracers during fluid flow in a porous media.

In this method, we discretize time fractional derivative of order α in the range (0, 1] and spatial

derivative terms by using the finite difference scheme and the Kansa method, respectively.

Moreover, the stability and convergence of time-discretized scheme are performed in detail

throughout the paper. Two numerical examples are included to illustrate the validity and

applicability of the approach.

Keywords: time fractional derivative, time fractional advection-dispersion equation, radial basis
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1. Introduction

We consider the following general advection-dispersion model which is naturally used to de-

scribe the transient transport of solutes through the homogeneous soil :

R
∂C(ξ, τ)

∂τ
=

[
DL

∂2

∂ξ2
− ν

∂

∂ξ

]
C(ξ, τ), (1)

where DL = De +αLν, DL > 0, and ν > 0. A complete list of parameters and variables for this

model are defined in Table 1.

Table 1. Parameters for advection-dispersion model.

Parameter Description

R The retardation factor

DL The longitudinal dispersion coefficient

De The effective diffusion coefficient

αL The dynamic dispersivity

ν The average flow velocity

C The concentration of the tracer (The pore water velocity )

ξ The spatial coordinate

τ The temporal coordinate
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The relation (1) is derived following Ficks first law and in principle it holds after the initial

mixing period or for the far field where the longitudinal shear flow dispersion becomes a dominant

mechanism of pollutant mixing in rivers. For simplicity in the rest of this work, we introduce

dimensionless space, time, and concentration variables via

x =
ξ

L
, t =

τ

L/ν
, u =

C

C0
.

Then the dimensionless reaction-advection-dispersion model becomes

∂u(x, t)

∂t
= β1

∂2u(x, t)

∂x2
− β2

∂u(x, t)

∂x
.

The advection-dispersion model is one of the most well-known fundamental equations which

has commonly been utilized to describe the Brownian motion of particles. Advection is the pro-

cess by which a conserved physical quantity is transported in a fluid in motion. Also, dispersion

is defined as the combined effect of advection and diffusion acting in a flow field with velocity

gradients. The advection-dispersion model plays a significant role in groundwater hydrology

to model the passive tracers carried by fluid and flow in a porous medium. Also, this model is

widely used to solve a range of problems in chemical, physical , and biological sciences, involving

diffusion or dispersion , such as mixing in inland and coastal waters [11], transport of thermal

energy in a plasma, flow of a chemically reacting fluid from a flat surface, and evolution of pop-

ulations [25]. The advection-dispersion model assumes instantaneous, reversible partitioning

to an immobile phase (i.e. sorption) with complete lateral mixing between regions of different

velocity [2]. This model explains the change of probability of a random function in space and

temporal. The main goal of this paper is to describe one approach based on fractional order

derivatives. A fractional advection-dispersion equation (FADE) is a generalization of the clas-

sical advection-dispersion equation (ADE) in which the first-order derivative is replaced with a

fractional-order derivative. In this note, we present a computational method to approximate the

solution of the time fractional advection- dispersion equation with reaction order α (0 < α ≤ 1)

of the form

∂αu(x, t)

∂tα
= β1

∂2u(x, t)

∂x2
− β2

∂u(x, t)

∂x
+ f(x, t), a ≤ x ≤ b, 0 ≤ t ≤ T, (2)

with intial condition

u(x, 0) = g(x), a ≤ x ≤ b, (3)

and the boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), t > 0, (4)

where u is the unknown concentration, β1 and β2 are the dispersion and advection coefficients,α ∈
(0, 1] is the temporal fractional order, the operator ∂αu(x,t)

∂tα denotes the Caputo fractional deriv-

ative which will be introduced as follow. Here a source term f(x, t) is added for the purposes

of validation in Section 4. To determine an analytical solution of this problems is extremely

difficult thus many authors are searching ways to numerically solve these problems. Several

papers have been written [32, 33, 40] to show the equivalence between the transport equations

using fractional order derivatives and some heavy-tailed motions. There exist several methods

to solve fractional advection-dispersion equation such as implicit and explicit difference method

[1, 5, 6, 27, 43], Green function [23], variable transformation [27], Adomians decomposition

method (ADM) [10] and optimal homotopy asymptotic method [21, 24, 36]. Now, we briefly

describe the definition and preliminaries of fractional calculus which will be used further in

current paper [37].
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Definition 1.1. A real function f(x), x > 0 is said to be in the space Cµ, µ ∈ R if there

exists a real number p(> µ), such that f(x) = xpf1(x) where f1(x) ∈ C[0,∞) and it is said to

be in the space Cm
µ iff f (m) ∈ Cµ,m ∈ N.

Definition 1.2. The left-sided Riemann-Liouville fractional integral of order α of function

f(x) is defined as:

x
aJ

αf (x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt,

where Γ is the Gamma function.

Lemma 1.1. Properties of the operator Jα can be found in [37], we mention only the follow-

ing:

For f ∈ Cµ, µ ≥ −1,

(1) JαJβf(x) = Jα+βf(x), for all α, β ≥ 0.

(2) JαJβf(x) = JβJαf(x), for all α, β ≥ 0.

(3) Jαxγ = Γ(γ+1)
Γ(γ+α+1)x

γ+α, α > 0, γ > −1, x > 0.

Definition 1.3. The Caputo’s time fractional derivative operator of order α of function

f(x, t) is defined as:

Dα
Cf(x, t) =

∂αu(x, t)

∂tα
=


1

Γ(m−α)

t∫
0

(x− t)m−α−1 ∂mf(x,η)
∂ηm dη, m− 1 ≤ α < m,

∂mf(x,t)
∂tm , α = m.

1.1. An overview of the concept of the meshless methods. Ameshless (meshfree) method

is a method that is used to launch system of algebraic equations for the entire problem domain

regardless of defining a predefined mesh for the domain discretization. In the past three decades,

for omitting mesh structure, scientists have employed meshless methods. In such approach an

assortment of scattered data were used as instead of constructing a meshing paradigm. One

of the most prominent meshless method is radial basis function (RBF) method that seems

to be a very well-organized system while facing interpolation of multidimensional scattered

data. In actuality, the utilization of such novel method for mathematical solution of partial

differential equation is based on the collocation method. It is (conditionally) positive definite,

rotationally and translationally invariant. The chief benefits of this method are straightforward

programming process and probable spectral precision. On the other hand, ill-conditioning of the

resulting linear system is considered to be the main difficulty. RBF approaches that use infinitely

differentiable origin functions that include a free factor are theoretically spectrally accurate.

The well utilization of such RBF methods comprises development of a linear arrangement that

is extremely ill-conditioned when the parameters of the method are in situation that the best

accurateness is ideally comprehended. Consequently, in several applications, RBF methods does

not possess the potential to produce exact results as they are skilled theoretically . Just contrary

to mesh based approaches such as finite element method (FEM), finite volume method (FVM)

and finite difference method (FDM), meshless methods use a set of accidental or uniform points

which are not interlinked in the arrangement named as mesh. The RBF method can be taken

into account as a category of compromise between the FE (finite elements) and the Pseudo-

spectral (PS) methods. On the one hand, the RBF method is based on an expansion into basis

functions that have a spatial location just similar to FE method. In this point of view, these basis

functions can be grouped in a definite section to locally increase the accuracy of the method.
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On the other hand, the basic functions used in the RBF expansion are high-order functions

that conventionally cover the whole domain like with the PS technique. It was remarked that

RBFs converge to PS methods in their at radial function boundary, making RBFs a generalized

formulation and methodology to PS methods, for scattered nodes and non-flat radial functions

[9]. RBFs have quite a lot of rewards over PS methods: in spite of subscription of flexibility

in terms of the domain shape, they allow a local node refinement, an easy singularity-free

generalization to N dimensions and a shape parameter letting user extend the solution space to

regions outside of the polynomial space, particularly susceptible to the Runge phenomenon [12].

The existence, uniqueness, and convergence of the RBFs approximation was discussed in detail

by [13, 31, 34]. Many detailed discussions have been carried out regarding meshless methods

and their related applications for solving complex PDEs [8, 18, 19, 20, 38, 39], for fractional

equations [3, 7, 15, 16, 22, 29, 30, 42] and for integral equations [14, 17].

1.2. The outline of current research. In the current research, our objective is to focus on

the numerical simulation of time fractional advection-dispersion equation via RBFs meshless

method. The paper taxonomy is structured as follows. In Section 2, the discretization process

of the problem in time is described variable via finite difference scheme of order O(τ2−α) for

0 < α < 1 and also approximated by using the RBFs in the space direction. In Section 3,

stability and convergence the the time discrete scheme and the error computes of this method

are presented. In Section 4, we report the numerical experiments of solving the aforementioned

equation with the proposed method for some test problems. Finally in Section 5, the paper ends

with a conclusion and some remarks for future work. Note that the numerical results have been

calculated by Matlab programming.

2. Implementation of the method

In this section we explain the numerical scheme for the solution of Eq. (2). Hence to construct

numerical scheme, we consider N points {xj = jh|j = 1, 2, 3, ..., N} in the bounded domain [a, b],

where x1, xN are the boundary points, and the grid points in the time interval [0, T ] are tagged

as tn = nτ, n = 0, 1, 2, 3, ...,M , where h = (b− a)/N, τ = T/M and un(xi) = u(xi, tn).

2.1. Discretization of time. In Eq. (2) is the Caputo fractional derivative of u(x, t) , which

can be written as

∂αu(x, t)

∂tα
=


1

Γ(1−α)

t∫
0

∂u(x,ξ)
∂ξ

1
(t−ξ)αdξ, 0 < α < 1,

∂u(x,t
∂t , α = 1,

(5)

we use the finite difference scheme to analogize the time fractional derivative term

∂αu(x, tn+1)

∂tα
=

1

Γ(1− α)

∫ tn+1

0

∂u(x, ξ)

∂ξ

1

(tn+1 − ξ)α
dξ

=
1

Γ(1− α)

n∑
k=0

∫ (k+1)τ

kτ

∂u(x, ξ)

∂ξ

1

(tn+1 − ξ)α
dξ

≈ 1

Γ(1− α)

n∑
k=0

∫ (k+1)τ

kτ

∂u(x, ξk)

∂ξ

1

(tn+1 − ξ)α
dξ. (6)
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Now, the first order time derivative taking into account the forward difference formula can be

approximated:

∂u(x, ξk)

∂ξ
=

u(x, ξk+1)− u(x, ξk)

τ
+Rk+1

1 (x),

where ξk ∈ [tk, tk+1]. In view of Taylor’s Theorem, the truncation error can be calculated as:

|Rk+1
1 (x)| ≤ C1τ or Rk+1

1 = O(τ).

Now, we obtain the following implicit discrete scheme for Eq. (6)

∂αu(x, tn+1)

∂tα
=

1

Γ(1− α)

n∑
k=0

(
u(x, tk+1)− u(x, tk)

τ
+O(τ)

)∫ (k+1)τ

kτ

1

(t− ξ)α
dξ

=
1

Γ(1− α)

n∑
k=0

(
u(x, tk+1)− u(x, tk)

τ
+O(τ)

)∫ (k+1)τ

kτ

dr

rα

=


τ−α

Γ(2−α)(u
n+1 − un) + τ−α

Γ(2−α)

n∑
k=1

[
(k + 1)1−α − k1−α

]
(un+1−k − un−k) n ≥ 1

τ−α

Γ(2−α)(u
1 − u0) n = 0

=


a0

[
(un+1 − un) +

n∑
k=1

bk(u
n+1−k − un−k)

]
, n ≥ 1,

a0(u
1 − u0), n = 0,

+O(τ2−α), (7)

where a0 =
τ−α

Γ(2−α) , bk = (k + 1)1−α − k1−α, (k = 0, 1, ..., n), u0 = u(x, t = 0) = g(x).

Substituting Eq. (7) into Eq. (2), we discretize time derivative of time FADE using a classic

finite difference formula with accuracy of order 2 − α and space derivatives between successive

two time levels n and n+ 1 as:

a0u
n+1 − β1∇2un+1 + β2∇un+1 =a0

[
un −

n∑
k=1

bk(u
n+1−k − un−k)

]
+ fn+1, n ≥ 1,

a0u
0 + f1, n = 0,

+Rk+1. (8)

where ∇ is the gradient differential operator and fn+1 = f(x, tn+1); n = 0, 1, ...,M . We will

prove that the bound for the error Rk+1 of semi-discrete scheme is O(τ2−α). Defining Uk as

the approximation of uk and eliminating the small term Rk+1, then a semi-discrete scheme is

achieved as follows:

a0U
n+1 − β1∇2Un+1 + β2∇Un+1 =

a0

[
Un −

n∑
k=1

bk(U
n+1−k − Un−k)

]
+ fn+1, n ≥ 1,

a0U
0 + f1, n = 0.

(9)
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2.2. Spatial derivative discretization by RBFs approximation scheme. In order to ap-

ply RBFs approximation scheme, we collocate N different points {xj |j = 1, ..., N}, where x1
and xN are boundary points and the other (N − 2) points are inner points {xj |j = 2, ..., N − 1}.
The approximate expansion of u(xi, tn) at a point of interest xi is as follows:

Un+1
i = U(xi, tn+1) =

N∑
j=1

λn+1
j ϕ(rij) + λn+1

N xj + λn+1
N+1, (10)

where {λn
j } are unknown coefficients of the nth time layer ϕ(rij) radial basis function, rij =

|xi − xj |. The some types of radial basis functions are generally listed in the following:

Generalized Multiquadric (GMQ) (c2 + r2)β,

Inverse Multiquadric (IMQ) 1√
c2+r2

,

Inverse Quadratic (IQ) (c2 + r2)−1,

Multiquadric (MQ)
√
c2 + r2,

Hyperbolic secant (sech) sech(cr),

Thin Plate Spline (TPS) r2m log(r) ,

where constant c is known as the shape parameter of the RBFs for controlling the shape of

functions which is found experimentally for each RBF. The appropriate choice of shape param-

eter is a significant duty in approximating functions by RBFs and scientists continuously have

concerned about choice a good shape parameter.

Besides N equations resulting from collocating Eq. (10) at N points, additional two equations

are required by the following regularization conditions

N∑
j=1

λn+1
j =

N∑
j=1

λn+1
j xj = 0, (11)

Combining Eq. (10) with Eq. (11), in a matrix form, it is to illustrate that:

{U}n+1 = A{λ}n+1, (12)

where {U}n+1 = [Un+1
1 , ..., Un+1

N , 0, 0]T and {λ}n+1 = [λn+1
1 , ..., λn+1

N ]T and the matrix A =

(aij)(N+2)×(N+2) is defined by

A =

[
Φ PN×2

P T 02×2

]
,

where Φ = [ϕ(rij)]N×N and

P =

 x1 1
...

...

xN 1


N×2

.

Rewriting of Eq. (8) in the matrix form can be represented as follows:

B{λ}1 = {b}1, (13)
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in which

B =

[
L(Φ) L(P )

P T 0

]
(N+2)×(N+2)

, (14)

where L represents an operator given by

L(∗) =

{
[a0 + β2∇− β1∇2](∗), 1 < i < N,

(∗), i = 1 or N.

and {b}1 = [b11...b
1
N , 0, 0]T where b11 = g11 , b1N = g12 and b1i = a0U

0
i + f0

i , i = 2, 3, ..., N − 1.

Also, for n ≥ 1

B{λ}n+1 = {b}n+1, (15)

{b}n+1 = [bn+1
1 ...bn+1

N , 0, 0]T are achieved by Eq. (8) as

bn+1
i =


gn+1
1 i = 1,

a0

[
Un
i −

n∑
k=1

bk(U
n+1−k
i − Un−k

i )

]
+ fn+1

i 1 < i < N,

gn+1
2 i = N.

(16)

After obtaining the accurate answers for the algebraic system of equations B{λ}k+1 = {b}k+1

at each time step, the solution can be constructed using Eq. (12).

3. Error estimation

First of all, we mention the following preliminary of functional analysis that shall be utilized for

discretization of time variable.

3.1. Background on functional analysis. Let Ω demonstrate a bounded and open domain

in R2 and let dx be the Lebesgue measure on R2. For p < ∞, we denote by Lp(Ω) the space of

the measurable functions u : Ω −→ R such that
∫
Ω

|u(x)|pdx ≤ ∞ . It is a Banach space for the

norm

||u||Lp(Ω) =

(∫
Ω

|u(x)|pdx
) 1

p

.

The space Lp(Ω) is a Hilbert space with the inner product

(u, v) =
∫
Ω

u(x)v(x)dx,

and norm in L2,

||v|| = [(v, v)]
1
2 =

[∫
Ω

v(x)v(x)dx

] 1
2

.

Also we assume that Ω is an open domain in Rd, γ = (γ1, ..., γd) is a d-tuple of nonnegative

integers and |γ| =
p∑

i=1
γi. Accordingly, we put

Dγv =
∂|γ|v

∂xγ1∂x
γ
2 ...∂x

γ
d

.

In this regard, one can obtain:

H1(Ω) = {v ∈ L2(Ω), dv
dx ∈ L2(Ω)},

H1
0 (Ω) = {v ∈ H1(Ω), v|∂(Ω) = 0},
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Hm(Ω) = {v ∈ L2(Ω), Dγv ∈ L2(Ω) for all positive integer|γ| ≤ m}.
The definition of inner product in Hilbert space is below as:

(u, v)m =
∑

|γ|≤m

∫
Ω

Dγu(x)Dγv(x)dx,

which induces the norm

||u||Hm(Ω) =

( ∑
|γ|≤m

||Dγu||2L2(Ω)

) 1
2

.

The Sobolev space W 1,p(I) is defined to be

W 1,p(I) = {u ∈ Lp(I); ∃g ∈ LP (I) :
∫
I

uφ
′
=
∫
I

gφ
′
, ∀φ ∈ C1(I)}.

Also, in this paper, we introduce the following inner product and the associated energy norms

in L2 and H1

||v|| = (v, v)1/2, ||v||1 = (v, v)
1/2
1 , |v|1 = ( ∂v∂x ,

∂v
∂x)

1/2.

by inner products of L2(Ω) and H1(Ω)

(u, v) =
∫
u(x)v(x)dx, (u, v)1 = (u, v) + (∂u∂x ,

∂v
∂x),

respectively.

3.2. Stability and convergence. In this section, the stability and convergence of the proposed

numerical solution will be described. The equation (9) can be restated according to below

expression:

Uk+1 − µ1∇2Uk+1 − µ2∇Uk+1 = (1− b1)U
k +

k∑
j=1

(bj − bj+1)U
k−j + bkU

0 + F k+1 , (17)

where µ1 = Γ(2−α)
τα β1, µ2 = −Γ(2−α)

τα β2, F = Γ(2−α)
τα f . Firstly, we state the following three

lemmas for discretization of the time fractional derivative [41, 26].

Lemma 3.1. Let g(t) ∈ C2[0, tk] and 0 < α < 1 then

∣∣∣∣ 1

Γ(1− α)

∫ tk

0

g(t)

(x− t)α
dt− τ−α

Γ(2− α)

[
(1− b0)g(tk) +

k−1∑
j=1

(bk−j−1 − bk−j)g(tj) + bk−1)g(t0)

]∣∣∣∣
≤ 1

Γ(2− α)

[
1− α

12
+

22−α

2− α
− (1 + 2−α)

]
max
0≤t≤tk

|g′′
(t)|τ2−α,

where bj = (j + 1)1−α − j1−α.

Lemma 3.2. The coefficients bj (j = 0, 1, 2, ..) defined by (7) fulfills the following:

• b0 = 1, bj > 0, j = 0, 1, 2, ...., bn → 0 as n → ∞;

• we have

bj > bj+1, j = 0, 1, 2, ... ;

k−1∑
j=0

(bj+1 − bj) + bk = (1− b1) +
k−1∑
j=1

(bj+1 − bj) + bk = 1;

• there exists a positive constant C > 0 such that:

τ < Cbjτ
α, j = 0, 1, 2, ... .

Proof. It is straightforward from the definition bj = (j + 1)1−α − j1−α, where 0 < α < 1. �
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Lemma 3.3. If Uk(x) ∈ H1(Ω) k = 0, 1, ...,M is the solution of Eq. (17), then

∥Uk∥ ≤ ∥U0∥ + b−1
k−1 max

0≤l≤M
||F l||.

Proof. We proceed the result by the principle of mathematical induction on k as the counter of

induction. If k = 0, we have

U1 = µ1∇2U1 + µ2∇U1 + U0 + F 1 . (18)

We multiply above equation by U1 and integrate on Ω,

||U1||2 − µ1(∇2U1, U1)− µ2(∇U1, U1) = (U0, U1) + (F 1, U1).

Considering the Cauchy-Schwarz inequality and Uk(x) ∈ H1(Ω), we easily get

||U1|| ≤ ||U0|| + ||F 1|| ≤ ||U0|| + max
0≤l≤M

||F l||,

the result is trivially true. Suppose the theorem is true for all j

||U j || ≤ ||U0|| + b−1
j−1 max

0≤l≤M
||F l||, j = 1, 2, ..., k. (19)

Multiplying Eq. (17) by Uk+1 and integrating on Ω, one obtains

||Uk+1||2 − µ1(∇2Uk+1, Uk+1)− µ2(∇Uk+1, Uk+1)

= (1− b1)(U
k, Uk+1) +

k∑
j=1

(bj − bj+1)U
k−j + bk(U

0, Uk+1) + (F k+1, Uk+1).

By means of the Cauchy-Schwarz inequality, Uk(x) ∈ H1(Ω) and bj+1 < bj < 1, it leads that

||Uk+1|| ≤ (1− b1)||Uk|| +
k∑

j=1

(bj − bj+1)||Uk−j || + bk||U0|| + ||F k+1||. (20)

Using Eq. (19), the last expression can be written as follows

||U j || ≤ ||U0|| + b−1
j−1 max

0≤l≤M
||F l|| ≤ ||U j || + b−1

j max
0≤l≤M

||F l||. (21)

Regarding Lemma 3.2, we get bj < bi < 1; 1 ≤ i ≤ j and easily it results

(1− b1)||Uk|| +
k∑

j=1

(bj − bj+1)||Uk−j || =
k−1∑
j=0

(bj − bj+1)||Uk−j ||

≤
k−1∑
j=0

(bj − bj+1)

[
||U0|| + b−1

k−j−1 max
0≤l≤M

||F l||
]

≤ (1− bk)||U0|| + (1− bk)b
−1
k max

0≤l≤M
||F l||

= (1− bk)||U0|| + (b−1
k − 1) max

0≤l≤M
||F l|| . (22)

Therefore, in view of Eqs. (20)-(22), the following inequality is achieved

||Uk+1|| ≤ ||U0|| + b−1
k−1 max

0≤l≤M
||F l||.

Induction completes the proof of the lemma. �
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Theorem 3.1. The fractional implicit numerical method defined by Eq. (17) is un-conditionally

stable.

Proof. Let Ûk(x); k = 1, ...,M , be the solution of the method (17) with the initial condition

Û0 = U(x, 0), then the error εk = Uk(x)− Ûk(x) fulfills

εk+1 − µ1∇2εk+1 + µ2∇εk+1 = (1− b1)ε
k +

k∑
j=1

(bj − bj+1)ε
k−j + bkε

0 + F k+1,

and εk+1|∂Ω = 0. Now recalling Lemma 3.3., it can be easily shown that

∥εk∥ ≤ ∥ε0∥, k = 1, ...,M.

The proof is completed. �

Theorem 3.2. Suppose that {u(x, tk)}Mk=1 is the exact solution of Eqs.(2)-(4) and {Uk(x)}Mk=1

be the time-discrete solution of Eq.(17) with initial condition U0(x) = u(x, 0). Then we have the

following error estimate,

||u(x, tk)− Uk(x)|| ≤ Cτ2−α,

where C is a positive constant.

Proof. First of all, we define ξk = u(x, tk)−Uk(x) at t = tk; k = 1, 2, ,M . Now, by subtracting

Eq.(8) from Eq.(9) lead to

ξk+1 − µ1∇2ξk+1 + µ2∇ξk+1 = ξk −
k∑

j=1

bj(ξ
k+1−j − ξk−j) +Rk+1,

ξ0(x) = 0 and ξ0(x)|∂Ω = 0. By using Lemma 3.3., it is quite evident that

||ξk|| ≤ b−1
k−1 max

0≤l≤M
||Rl|| ≤ b−1

k−1τ
2,

Because b−1
k−1τ

α is bounded [28], thus we result

||ξk|| = ||u(x, tk)− Uk(x)|| ≤ Cτ2−α,

and the proof is finished. �

4. Numerical experiments

In this section to demonstrate the effectiveness of our approach, we current the numerical

results of the suggested approach. We tested the accurateness and stability of the method

defined in this paper by doing the aforesaid numerical method for different values of h, τ and c.

To check the accuracy of method, we compute the following error norm:

L∞ = max
1≤j≤M−1

|U(xj , T )− u(xj , T )|.

The computational orders (denoted by C1-Order and C2-Order) in time variable and in space

variable respectively can be evaluated as below

C1 − order =
log(E1

E2
)

log( τ1τ2 )
,

C2 − order = log2

(
||L∞(16τ, 2h)||
||L∞(τ, h)||

)
,

in which Ei is the error value that corresponds to grid with mesh size τi [35, 4].
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Example 4.1. Consider the following non-homogeneous FADE

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
− ∂u(x, t)

∂x
+ f(x, t), x ∈ [0, 1], 0 ≤ t ≤ T, 0 < α < 1,

in which f(x, t) = t1−α

Γ(2−α) sin(x) + t[sin(x) + cos(x)]. The analytic solution of the above problem

is given by u(x, t) = t sin(x) [35].

The initial and boundary conditions can be achieved from the analytic solution. We solve

this example with the method presented in this paper with several values of h, τ , for a = 0,

b = 1, c at final time T = 1. The L∞ error, C1-order and C2-order of applied method are shown

in Tables 2 and 3. Based on detailed comparisons in Table 2, we conclude that the convergence

order in time is 2 − 0.2 = 1.8 or 2 − 0.7 = 1.3. Also, in view of Table 3, we conclude that the

convergence order of our proposed numerical approach in space is good agreemente with [35].

Figure 1 displays the numerical solution of Example 4.1. using MQ with c = 0.5.

Table 2. Errors and computational orders obtained for Example 4.1. with h = 0.1 and MQ-RBF.

τ α = 0.2 α = 0.7

L∞ c C1-order L∞ c C1-order

1/10 2.3610× 10−3 0.50 − 1.6240× 10−2 0.65 −
1/20 7.2306× 10−4 0.55 1.7073 6.5437× 10−3 0.52 1.3141

1/40 2.1852× 10−4 0.65 1.7264 2.6312× 10−3 0.68 1.3144

1/80 6.7150× 10−5 0.90 1.7023 1.0467× 10−3 0.75 1.3299

1/160 2.0148× 10−5 0.95 1.7368 4.1838× 10−4 0.95 1.3230

1/320 6.1053× 10−6 1.00 1.7225 1.6572× 10−4 1.00 1.3361

TCO 1.8 1.3

Table 3. Errors and computational orders obtained for Example 4.1. with c = 0.5 and MQ-RBF .

h τ α = 0.2 α = 0.7

L∞ C2-order L∞ C2-order

1/4 1/4 8.246× 10−2 − 6.473× 10−2 −
1/8 1/64 3.632× 10−3 4.5049 3.689× 10−3 4.4636

1/16 1/1024 1.536× 10−4 4.5635 8.019× 10−5 4.3820

1/8 1/8 4.161× 10−2 − 1.296× 10−2 −
1/16 1/128 2.689× 10−3 3.9518 3.541× 10−4 5.1938
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Figure 1. Numerical solution of Example 4.1. with α = 0.7, τ = 0.001 and h = 0.01.
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Example 4.2. Now, we consider the following non-homogeneous FADE,

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
− ∂u(x, t)

∂x
+ f(x, t), x ∈ [0, 1], 0 ≤ t ≤ T,

subject to the initial condition u(x, 0) = 0, f(x, t) = 2x − 2 + 2√
π

√
t with α = 0.5. Then the

analytic solution of this example is u(x, t) = x2+ t. The initial and boundary conditions can be

achieved from the analytic solution. We solve this example with the method presented in this

paper with several values of h, τ , for a = 0, b = 1, c at final time T = 1. The L∞ error and

C1-order of applied method are shown in Table 4 Based on detailed comparisons in Table 4, we

conclude that the convergence order in time is 2 − 0.5 = 1.5. Table 5 displays the comparison

between errors obtained for MQ, IQ and GA RBFs with h = 0. and α = 0.5 for Example 4.2.

Figure 2 shows the numerical solution of Example 4.2. using MQ with c = 0.65.

Table 4. Errors and computational orders obtained for Eample 4.2. with h = 0.1 and MQ-RBF.

τ MQ

L∞ c C1-order

1/10 2.3746× 10−3 0.65 −
1/20 8.5153× 10−4 0.50 1.4778

1/40 3.0195× 10−4 0.75 1.4959

1/80 1.0457× 10−5 0.90 1.5306

1/160 1.2075× 10−6 1.00 1.5617

TCO 1.5

Table 5. Comparison between errors obtained for different RBFs with h = 0.1 and α = 0.5 for Example 4.2.

τ MQ IQ GA

L∞ c L∞ c L∞ c

1/10 4.7498× 10−3 0.50 5.2461× 10−3 0.5 5.3673× 10−2 6.5

1/20 2.6432× 10−3 0.50 2.8147× 10−3 0.5 2.8573× 10−4 6.5

1/40 1.7483× 10−3 0.50 1.3498× 10−3 0.5 1.5268× 10−4 6.5

1/60 1.4316× 10−4 0.50 2.7498× 10−4 0.5 2.7561× 10−4 6.0

1/80 1.1387× 10−4 0.50 1.2642× 10−4 0.5 1.4791× 10−4 6.0

1/100 4.8145× 10−5 0.50 5.6233× 10−5 0.5 5.6233× 10−5 5.5
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Figure 2. Numerical solution of Example 4.2. with α = 0.5, τ = 0.001 and h = 0.01.
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5. Conclusion

In the research, an attempt was made to develop an implicit meshless approach based on the

RBF for numerical simulation of time FADEs, which is a category of fractional partial differen-

tial equation (FPDE). The stability and also convergence of the proposed meshless approach are

assessed hypothetically and mathematically. Numerous numerical instances with different prob-

lem domains are utilized to investigate the developed meshless model accuracy and effectiveness.

As can be inferred from mentioned investigations, the convergence order of this current method

concerning to time is O(τ2−α). All in all, the current meshless formulation is very operative

for modeling and simulation of fractional differential equations, and it has well prospective to

advance a robust simulation tool for problems in engineering and science which are governed by

the numerous types of fractional differential equations. In the future studies, we will focus on

problems with much more complexity.
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